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The problem of determining both the steady and unsteady axially symmetrical 
motion of a viscous incompressible fluid outside a fixed sphere when the fluid a t  large 
distances rotates as a solid body is considered. It is assumed that the Reynolds 
number for the motion is so large that the boundary-layer equations may be assumed 
to hold. The steady-state boundary-layer equations are solved using backward- 
forward differencing and the terminal solutions a t  the equator and the pole of the 
sphere are generatedas part ofthe numerical procedure. To check that this steady-state 
solution can be approached from an unsteady situation, the case of a sphere that is 
initially rotating with the same constant angular velocity as the fluid and is then 
impulsively brought to rest is investigated. I n  this case the motion is governed by 
a coupled set of three nonlinear time-dependent partial differential equations, which 
are solved by employing the semi-analytical method of series truncation to  reduce 
the number of independent variables by one and then solving by numerical methods 
a finite set of partial differential equations in one space variable and time. The 
physical properties of the flow are calculated as functions of the time and compared 
with the known solution a t  small times and the steady-state solution. 

1. Introduction 
The steady flow of a viscous fluid due to  a sphere that rotates about a diameter 

with constant angular velocity in a fluid a t  rest has received much attention 
t'heoretically, experimentally and numerically. Recently Dennis, Ingham & Singh 
(1981) have reviewed this work and shown that their numerical solutions for values 
of the Reynolds number R ( = a2wo/v,  where a is the radius ofthe sphere, oo its angular 
velocity and v the coefficient of kinematic viscosity of the fluid) up to 5000 are in 
excellent agreement with the experimental results of Sawatzki (1970) and theoretical 
results valid a t  small values of the Reynolds number given by Takagi (1977). At large 
values of the Reynolds number the results appear to be approaching the boundary- 
layer solution given, for example, by Banks (1976) everywhere except near the equator 
of the sphere. Here there is evidence of the development of the equatorial jet in which 
fluid near the sphere is drawn towards the equator and expelled in a radial jet in a 
region close to  the equator. This phenomenon has been observed experimentally by 
Bowden & Lord (1963). At large distances from the sphere the radial jet is in good 
agreement with that predicted by Riley (1962) and observed experimentally by 
Richardson (1976). In  the range of Reynolds number of the numerical solutions no 
evidence was found to substantiate the theoretical prediction of Smith & Duck (1977) 
that a recirculating region exists near the sphere in the equatorial region. 
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In  this paper the inverse of the above problem is considered, namely the flow due 
to a fixed sphere in a uniformly rotating fluid with the sphere centred on the axis of 
rotation. Stewartson (1957) postulated that the sphere could create a local disturbance 
for R $- 1 ,  and applied boundary-layer theory, taking the outer boundary condition 
to be that of uniform rotation. He used a Pohlhausen method to solve the 
boundary-layer equations with the same approximation that Howarth (1951) had 
previously applied in the rotating-sphere problem. Stewartson conjectured that the 
flow at the poles of the sphere is of the form given by Bodewadt (1940). I n  the vicinity 
of the equator he obtained a similarity-type solution. Thus the fluid is drawn into 
the boundary layer near the equator and expelled near the poles, there being none 
left inside the boundary layer a t  the poles. 

The earliest example to be considered of flow due to a solid object a t  rest in a 
rotating fluid was in fact that  due to a circular disk of radius a. An approximate 
solution using the momentum integrals was given by Schultz-Griinow (1935), and he 
found that the boundary layer begins at the edge of the disk and its thickness is 
virtually proportional to (a-r):, where r denotes the distance from the axis of the 
disk, which is the axis of rotation. The boundary layer spreads over the whole disk, 
but the convergence of the series expansions used by Schultz-Griinow were not 
satisfactory near r = 0. 

The problem of the flow in the boundary layer due to  a free vortex, with the 
azimuthal velocity proportional to r - l ,  on a fixed co-axial disk has been solved by 
Burggraf, Stewartson & Belcher (1971). Using the similarity solution that is valid 
near the edge of the disk, the boundary-layer equations were integrated numerically 
for decreasing values of r until the properties of the terminal solution became evident. 
A two-layer asymptotic expansion was formulated for the solution of the boundary- 
layer equations near r = 0, and the terminal-flow properties revealed by the analysis 
were shown to be in excellent agreement with the numerical results. The mass flux 
in the boundary layer did not vanish as r -0, thus indicating that the boundary 
layer must erupt from the surface a t  r = 0 in the manner envisioned by Moore (1956). 
The numerical calculations can, however, be continued step by step from the edge 
of the disk to any predetermined non-zero value of r .  

The work of Burggraf et al. (1971) was extended by Belcher, Burggraf & Stewartson 
(1972) to deal with the situation where the outer flow is a generalized vortex with 
the azimuthal velocity proportional to r P n ,  where - 1 < n < 1 .  The case n = 1 had 
already been discussed by the same three authors, and when n = - 1 the problem 
considered reduces to that discussed by Cooke (1966) and Anderson (1966). I n  the 
case n = - 1 there are sign reversals in the radial component of velocity, which implies 
that  a numerical solution cannot be obtained by marching step by step in a radial 
direction because of instabilities. Surprisingly, Anderson was able to obtain a solution 
down to 40% of the disk radius. Because of the possibility of non-uniqueness and 
instabilities of the previous methods Belcher et al. (1972) used a time-dependent 
approach. They found i t  impracticable to  compute the solution right up to r = 0 so 
they considered the possibility of obtaining solutions for rE < r < 1 ,  where rE is a 
sufficiently small value of r such that the terminal solution as r + 0 can be inferred 
from knowledge of the solution near r E .  However, a solution in rE < r < 1 is not 
uniquely determined by the conditions on the disk, in the free stream and a t  the edge 
of the disk, since we can apply arbitrary conditions on that part of the line r = 
where u < 0. This is because disturbances travel with the local velocity and hence 
move outwards if u > 0. Thus a change in boundary condition on r = Y E  where u > 0 
would modify the flow in the region of interest, i.e. rE < r < 1 ,  whereas if the change 



Fixed sphere in  unbounded rotating j u i d  22 1 

of boundary condition were made where u < 0 then the solution in r E  < r < 1 would 
be unaffected. This kind of phenomenon has received much attention recently, and 
has been discussed in detail by Ingham (1978). The first successful methods of solution 
were given by Hall (1969) and Dennis (1972). Belcher et al. (1972) followed Hall’s 
method by introducing time as an additional variable, and they carried out the 
integration forward in time until the solution was judged to be steady. It was noted 
that this steady-state criterion was not always easy to enforce since the solution may 
change very slowly with time. 

In the present paper the problem corresponding to  n = - 1 but with a sphere rather 
than a disk has been considered, i.e. the boundary-layer solution is determined for 
a fixed sphere on the axis of an unbounded fluid that is rotating as a solid body a t  
large enough distances. The consideration of the case of a sphere rather than a disk 
eliminates the need for taking account of the singular solution that exists a t  the edge 
of the disk. Further, the terminal solutions are obtained from the numerical 
computations rather than by using an enforced boundary condition as in the disk 
problem. The method of solution used is similar to that of Dennis (1972) rather than 
Hall (1969), since this eliminates the difficulties of judging when the flow is steady. 
Banks (1971) obtained the first three non-zero terms in the series expansion for the 
solution to this problem that is valid near the equator of the sphere, and the first 
two non-zero terms in the expansion valid near the pole. In  attempting to obtain 
higher-order terms his analysis suggested that the effect of the sphere is not a local 
one but rather the flow is of the Taylor-column type. He produced experimental 
evidence that confirmed the existence of this phenomenon. Thus one of the aims of 
the present paper is to discover if a steady-state solution of the boundary-layer 
equations is possible for this situation, although physically this may not be achieved. 
We may note that in the rather similar situation arising in the problem of flow in 
a curved pipe a t  large Dean number, Smith (1975) hits obtained a similarity solution 
valid near the inner bend of the pipe, but could not match this with the similarity 
solution near the outer bend. 

The question that then arises is whether, even if a steady-state boundary-layer 
solution does exist, this can be attained from an unsteady situation. This is not always 
possible in this type of problem, as Bodonyi (1978) discovered when considering the 
unsteady similarity equations for the flow above a rotating disk in a rotating fluid. 
He considered the unsteady similarity equations for a large rotating disk immersed 
in an otherwise unbounded rigidly rotating incompressible fluid for several values of 
the parameter 01 that denotes the ratio of the angular velocity of the disk to that of 
the rigidly rotating fluid. He found in a particular range of 01 that although steady-state 
solutions exist, the unsteady solutions broke down at a finite value of the time. In  
these cases i t  was found that either velocity components became infinite or that  limit 
cycle solutions existed. Banks & Zaturska (1979) confirmed in general the findings 
of Bodonyi. I n  particular, both investigations showed that the approach to the 
steady-state situation is very slow when a! = 0; this case corresponds to the flow near 
the pole of the sphere in the present problem. 

In the light of these difficulties, it  was decided in the present paper to consider in 
more detail the unsteady approach to the solution that is valid near the equator by 
using techniques similar to those described by both Bodonyi (1978) and Banks & 
Zaturska (1  979). Further, the full unsteady boundary-layer equations have been 
integrated numerically using the series-truncation method described by Dennis & 
Ingham (1979). In  that paper an investigation was made of the fluid flow due to Bud- 
denly starting a sphere rotating with a constant angular velocity. The boundary-layer 
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equations were integrated up to a certain time, beyond which the number of 
terms required in the series expansions became excessive and i t  was impossible to 
retain enough terms to maintain a high degree of accuracy. This was mainly due to 
the formation of the equatorial jet. At the time a t  which the calculations were 
terminated all quantities had almost settled down to their steady values everywhere 
except near the equator. I n  the present paper the reverse of the problem considered 
by Dennis & Ingham (1979) is considered, namely the sphere and fluid are assumed 
to be in solid-body rotation and then the sphere is suddenly brought to rest. When 
the sphere is stopped suddenly a boundary layer of thickness proportional to ti is 
initially formed on the surface. Therefore a t  small times the unsteady boundary-layer 
equations are solved numerically with the appropriate scaling in the radial direction. 
After the initial growth of the boundary layer has been accounted for one reverts back 
to the normal boundary layer coordinates and the equations are solved for increasing 
values of time. 

2. Basic equations 
Non-dimensional spherical polar coordinates (ar, 8 , $ )  with corresponding velocity 

components aw,(w, u, v) are used, where a is the radius of the sphere, w,, the angular 
velocity of the fluid at large distances, r = 0 is the centre of the sphere and 8 = 0 
is the axis of rotation of the fluid. On assuming the flow to be axially symmetric (i.e. 
a/a$ = 0) then the equations of motion and continuity in the form given by Banks 
(1971) are 

(3) 
av av uav  vw+uvcote 
-+w-+--+ 
at ar r a B  r R 

(u sin 8) = 0, (4) 
i a  l a  
- - (Pw) + ~ - 
r2 ar r sin 8 a8 

where 

R = n2wo/v (6) 
and the pressure has been non-dimensionalized with respect to  pa’w;. 

Equations (1)-(4) have to be solved subject to  the boundary conditions 

( r  =: l ) ,  (7) 

u,ui+O, v+rsinO ( , r +  a), (8) 

u = v = u1= 0 

and in the unsteady configuration the conditions are 

(9) u = u, = 0, v = rs ino ( r  3 1 , t  < 0 1 ,  1 
v = 0, ( r  = 1 , t  2 0). J 
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3. Steady boundary-layer equations 
If R + 1 then, following Stewartson (19571, we assume that away from the surface 

of the sphere the flow is described approximately by the inviscid solution u = LO = 0, 
2’ = r sin 19, but that near r = 1 there is a boundary layer in which the radial derivative 
of a given quantity is much greater than the corresponding derivative in the 
&direction. A balance of the inertial and viscous terms in the boundary layer suggests 
the introduction of the stretched radial coordinate z given by 

z = ( r - - i )Ri .  (10) 

If we now perform the usual boundary-layer analysis, putting w = R-46 in (1)-(4) 
and then dropping the tilde, they become 

au au cos 0 a z u  
w -+ u -- R2 - = -sin 0 cos f3 +-, az ae ~1n3 e a 2 2  

au) au 
a:. ae -+-++cote = 0, 

p = + sin2 8. (14) 

The boundary conditions for these equations are 

u = 21 = U )  = 0 ( z  = O ) ,  (15) 

u+O, R +sin20 ( z +  00). (16) 

Here R = v sin 8, which is the function used by Dennis et al .  (1981). Also, by symmetry 
of the motion we have that 

(17) 
aul 
ae u = R = - = o  ( 0 = 0 ) ,  

an aw 
ae ae u=-=---O - (0 = 4.). 

Because of the symmetry it, is only necessary to obtain a solution in the region 
0 < 8 < $77 and 0 < z < z,, where z, is the station a t  which the flow may be assumed 
to be undisturbed. I n  this region a rectangular grid is set’ up with nodes at  the points 

z i =  ( i -1)h  ( i =  1 ,2 ,3 ,  . . . ,  M + l ) ,  \ 
s j = ( j - i ) k  ( j = i , 2 , 3  , . . . ,  N + I ) ,  J 

where M = z,/h, N = m/Zk, and h, k are the grid sizes in the z -  and #-directions. 
The partial differential equations (1 1)-( 13) are now discretized using central 

differences everywhere except for the terms involving auld0 in (1  1) and aR/W in (12), 
where forward or backward differences are used according to the sign of the coefficient 
u of these terms. The differencing is therefore of second-order accuracy in h but only 
of first-order accuracy in k, and the approximations are generally less accurate than 
if central differences were used throughout. The advantage is that  the matrices 
associated with the sets of difference equations are diagonally dominant. This type 
of method was used by Dennis (1972) in a similar class of problems; and i t  has been 



224 S. C. R. Dennis and D. 12. Ingham 

used with much success in many other problems. Thus the resulting finite-difference 
equations to be solved are 

where qi , j  = u ~ , ~ .  y = h 2 / k ,  and the upper signs apply when ui3i > 0 and the lower signs 
when uigj < 0. 

It is this procedure of ensuring that the diagonal coefficient 2 f yqi,j of each of the 
matrices associated with the sets of equations (20) and (21) is in effect replaced by 
2 + y ) ~ ~ , ~ )  that  preserves diagonal dominance and leads to convergent iterative 
procedures. Equation (22) is obtained by applying the Crank-Nicolson procedure to 
(13), considered as a first-order equation in the z-direction. Equations (20)-(22) must 
be solved for i = 2 ,3 ,  . . . M a n d j  = 2,3 ,  . . ., N .  The values of w on 8 = 0 and Q and 
ui on 6' = &n are found by using the finite-difference equation (22) on 6' = 0 and 0 = in 
and (21) on 6' = in, using symmetry conditions where appropriate. The position of 
the outer boundary a t  z = z, was varied and a value z ,  = 18 was found to be 
satisfactory. Four different grids were used corresponding to values of ( M ,  N )  given 
by (40,20), (80,40), (l00,SO) and (120,60). The results obtained with the last two 
of these grids were indistinguishable graphically. 

I n  order to  start the iterative process all unknown quantities were set to zero. The 
correct sequence of procedures is of considerable importance, and, moreover, simply 
setting qi , j  = ui,i and taking, say, the positive sign always in (20) and (21) resulted 
in divergence. The iterative sequence, which converged without using under- 
relaxation, was as follows. 

(i)  Fix w, IR and q while one sweep of (20) is carried out. I n  this sweep the grid 
points are swept along lines of constant 0, whilst in the z-direction the sweeps were 
made in the decreasing z-direction for 0 < 0 Q in and in the increasing z-direction 
for an < 6' < in. This takes account of the fact that  the similarity solution at the poles 
must be obtained by marching towards z = 0 and that at the equator by marching 
away from z = 0. 

(ii) Fix ui, u and q while one sweep of (21) is carried out in the same order as that 
described in (i). 

(iii) Fix u while one sweep of (22) is carried out in the same order as that described 
in (i). 

(iv) Set q equal to u.  
(v) Perform steps (i)-(iv) until convergence. This was said to have been achieved 

when 

where f is t i ' ,  O and u, and the summation extends to  all grid points. The quantity 
e is a predetermined constant of small positive value. In  the present calculations 
c = was found to be small enough. 

Banks (1971) solved the equations (1  1)-( 13) by assuming that 

I (24) 

m rn 

n=o n=o 
u = C (6'-~n)2n+1F!n+l(z), %i = (6'-&n)2n G 2 n + l ( ~ ) ,  
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near 8 = in. On substituting the expressions (24) into equations (11)-(13) and 
equating coefficients of powers of 8 - i ~  three sets of ordinary differential equations 
were obtained, which were solved numerically for F,,,,, G,,+,, H,,+, (n = 0 , 1 , 2 ) .  The 
approach to the polar solution was obtained by expanding the velocity components 
about 8 = 0, where the leading term is simply the Bodewadt similarity solution. In  
this region the expansion is 

00 co oci 

s=o s-0 s-0 
= x 0 2 n + l ~ , , ( ~ ) ,  tl = z e Z n + l ~ , , ( ~ ) ,  = x P ~ H , , ( ~ ) .  (25) 

Again substituting the expressions (25) into (11)-(13) and equating coefficients of 
powers of 8 Banks obtained three sets of ordinary differential equations, which were 
solved for Fzn, G,, and H,,  (n = 0,  I). These calculations were repeated in the present 
investigation and the results obtained by Banks (1971) confirmed. 

I n  figures 1 and 2 the variation of the skin-friction components R-t(au/ar),,, and 
R-+3v/ar),,, are shown from results obtained by the numerical solution of the 
finite-difference equations (20)-(22). Also shown are the leading terms of the solutions 
in the forms of the expansions (24) and (25). I n  this case 

near 8 =an. (27) 1 
R -i(au/aY),=, - 0.95389p3- in) - 0.5091 1(8 - an13 

R-+(av/ar),,, - 0.46154 -010752(e -+~y  

+ o.03955(e-in)5 

+ 0.00 1 23 (8 - b 14 

It is seen that the results of taking successively more terms in (26) and (27) are 
consistent with those of the numerical solutions of (20)-(22). 

Figure 3 shows the variation of the radial velocity at the outer edge of the boundary 
layer w(8,  a). Also shown are the leading terms from (24) and (25), which are given 
by 

w(00,O) - 1.349-0*18902 near 8 = 0, 

w ( a , B )  - -1*3284+3.2756(8-&r)2+ 1*5041(8-+n)4 near 8 = h. 

It was found that even with a very crude grid size and the value of z, as small AS 

10, the results presented in figures 1 and 2 for the solution of the finite-difference 
equations (20)-(22) could be obtained correct to within a few per cent. On the other 
hand. the value of w(f3.00) is very sensitive to the values of h, k and z,. The sensitivity 
to the size of h and k is probably due to the rapid variation of w(0, CQ) near 8 = fn, 
and if insufficient grid points are used in the &direction the finite-difference equations 
cannot approximate adequately these gradients. This results in the terminal solution 
near 0 = 0 not being approached smoothly but in an oscillatory manner; oscillations 
are in fact present in the final solutions. The large gradients of the solutions, 
particularly w(0, m), near 8 = an could be dealt with by employing a non-uniform 
grid in the @direction; but in any case great care has been taken to ensure that the 
grid is small enough to obtain accurate solutions. 

In order to demonstrate the approach to the solutions a t  8 = 0 and in more fully, 
figures 4 and 5 show the transverse velocity profiles a t  8 = hn, &r, in, an and 0 = $77, 

En, &n, in, $I respectively. Also shown in figures 4 and 5 are u/8 and u/(&r-8), 

1 (28) 
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e 
FIGURE 1 .  The variation of R+(au/ar),_, as a function of 8. The numbers 1 ,  2 and 3 indicate the 

number of terms used in (26) and (27). The broken line is the numerical solution. 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

6 

FIGVRE 2. The variation of R+%/ar),-, as a function of 6. The numbers 1, 2 and 3 indicate the 
number of terms used in (26) and (27). The broken line is the numerical solution. 
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FIGURE 3. The variation of ur(co, 8 )  as a function of 0. The numbers 1 ,  2 and 3 indicate the 
number of terms used in (28). 

according to the solution in the form of (25) and (24) respectively. For 0 = &7r the 
analytical and numerical results are indistinguishable graphically, and therefore only 
the numerical results are shown in figure 5 ( a ) .  The results for the other two 
components of velocity can be obtained with a similar degree of agreement. Hence 
it has been shown that the terminal solutions predicted by the theory are being 
approached without the necessity of enforcing them as boundary conditions. It has 
moreover been shown that a steady-state boundary-layer solution of the type 
envisaged by Stewartson (1957) is approached. The steady-state model is probably 
not realizable in practice. It nevertheless derives from a solution of the boundary-layer 
equations (1  i )-( 13) ; and the local solutions near 0 = 0 and 0 = 77 are consistent with 
the solution for all 0. The question of how the boundary-layer model relates to the 
actual situation still remains an open question, but we now show that the steady-state 
model is also consistent with the limit for large time of the solution of the 
time-dependent boundary-layer equations. 

4. Impulsively stopped rotating sphere in a rotating fluid 
Dennis & Ingham (1979) investigated the motion of a viscous incompressible fluid 

that occupies the region outside a sphere that a t  time t = 0 is impulsively started to 
rotate with an angular velocity oo about an axis through its centre. I n  the present 
paper the inverse of this problem is considered, namely the sudden stopping of the 
sphere after it has been rotating with the fluid with a constant angular velocity oo 
about an axis through a diameter of the sphere. The unsteady boundary-layer 
equations are assumed to hold. The basic equations and analysis are virtually the 
same as that presented by Dennis & Ingham (i979); we therefore give only a brief 
summary here. 

Owing to the impulsive nature of the motion a boundary layer of thickness 
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0.2 1 

FIGURE 4(a-c). For caption see facing page. 
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( d )  

FIGURE 4. The variation of u/O as a function of 2; solid line using the two term expansion in (25), 
broken line the numerical solution: (a )  0 = &r; ( b )  An: (c) in; ( d )  an. 

proportional to  (t /R)i  is initially formed on the surface of the sphere. Thus the 
co-ordinate normal to the surface of the sphere is taken as 

x = +(t/R)-t ( r  - 1 ) (29 ) 

in the initial stages of the motion. The method of solution is the series-truncation 
procedure employed by Dennis & Ingham (1979) in which the dependent variables 
are expressed as series of Gegenbauer functions in the 0-direction. I n  theory the series 
are infinite, but in practice they are each truncated to a finite number no of terms. 
Initially the nature of the motion is such that no need only be small to give an accurate 
description of the flow, and at the start no = 2 was assigned. The rapid variation of 
the flow for small t was dealt with by taking 25 small time steps of magnitude 0001, 
and the process was continued with 159 time steps of size 0 0 2 5 .  Accuracy checks were 
applied periodically by obtaining solutions with both half and double the current time 
step. Comparison of these solutions was satisfactory, as also were similar comparisons 
of solutions obtained using grid sizes of 0.05 and 0.1 in the x-direction. The finite value 
x = x, at which the outer boundary conditions were assumed to  hold was varied at 
different times to  ensure that i t  was large enough; at small times x, = 5 was 
satisfactory. 

The effect of the sudden stopping of the sphere gradually diffuses outwards into 
the surrounding fluid with increasing time. The flow becomes more complicated and 
more terms become necessary in the series of Gegenbauer functions. This is 
accommodated by increasing no by one as each new term becomes significant. In  this 
way the step-by-step integration was continued up to t = 4, by which time the value 
no = 16 had been reached. For t > 4 the integration of the unsteady boundary-layer 
equations was continued using variables appropriate to  the steady-state boundary 
layer and with no = 20, which was the greatest value consistent with limitations on 
computer storage. The integration up to t = 20 was carried out, using a time step of 
magnitude 0.1. After t = 20 the time step was increased to 0.5 and the integration 
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FIGURE 5 (a-c),  For caption see facing page 
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FIGITRE 5. The variation of u/(!p-B) as a function of z ;  solid line using the three-term expansion 
in (24), broken line the numerical solution: (a) 8 = &rr; ( b )  in; (c) &n; ( d )  in: ( e )  in. 

ext’ended to t = 300. Because of the larger time steps and limitation on no, the 
accuracy deteriorates for t > 4, but the main aim was to investigate whether a 
steady-state solution appeared to be approached. The location z = z,, of the outer 
boundary was taken a t  the same station z ,  = 60 used by Bodonyi (1978), although 
Banks & Zaturska (1979) suggest that this is too small for accurate results. 

Near the poles of the sphere the time development of the flow has been investigated 
by Bodonyi (1978) and Banks & Zaturska (1979). With 

(30) ‘U = OfO(2, t ) ,  2’ = Ogo(z,  t ) ,  w = k o ( z .  t )  

the unsteady boundary-layer equations give rise to the equations 
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If the sphere has been stopped impulsively, the initial and boundary conditions are 

(32) 1 
h, = f o  = 0, go = 1 (t  = 0, all z ) ,  

g , + 1 ,  f , + O  ( z - + c o ,  all t ) ,  

go = 0,  h, = f o  = 0 ( z  = 0, all t > 0). 

Equations (31) subject to t,he conditions (32) have been solved in the present paper 
using the method described by Banks & Zaturska (1979). 

Near the equator we write 

u = (13-&n)fi(z, t ) ,  ZI = gl(z, t ) ,  w = h,(z, t ) ,  (33) 

and then the unsteady boundary-layer equations give 

If the sphere has been stopped impulsively the initial and boundary conditions are 

1 h, =f l  = 0, g1 = 1 ( t  = 0, all z ) ,  

g1 + 1, fl + O  ( z +  00, all t ) ,  

g, = 0 ,  h., =fi = 0 ( z =  0, all t >  0). 

(35) 

Equations (3.1). subject to the conditions (35), have been solved numerically in 
exactly the same manner as the equations (31) subject to the conditions (32). The 
object was to  see if the steady-state solution was approached at both I3 = 0 and in. 
It was found that near the pole the approach to the steady state was extremely slow 
and that all quantities oscillated about their steady-state values. The results obtained 
are in good agreement with Banks & Zaturska (1979) and to  a lesser extent with 
Bodonyi (1978). Thus the detailed results are not presented, but the agreement served 
as a check on the accuracy of the method for dealing with the unsteady boundary-layer 
equations at  the equator, namely (34). 

Figure 6 shows the approach to the steady-state solution for the skin-friction 
coefficients R-:(au/ar),.,,, s-;,,, R-;(av/ar),,,, @,+,, and for w( co, in, t ) .  A similarity 
solution in powers o f t  can be obtained, in the usual manner, for the initial variation 

From (34) the differential equations satisfied by f:, g: and h: become 
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4 5 

t 

F I Q ~ R E  6. The variation of R+3+b)T=l,o-i,,, R-~(atl/ar)r-l,o-in and w(co,n/2, t )  as functions of 
time. Solid lines: analytical results as given in equation (39). Broken lines: numerical results. 

The boundary conditions (32) reduce to 

Equations (37)  have been solved subject to the boundary conditions (38), and this 
gives, for small values oft,  

Results according to (39) are also shown in figure 6, and the full numerical solution 
is in good agreement with these results. Figure 7 shows the time development of the 
functionf,(z, t )  in (33). The results for the other components of velocity show similar 
approaches to their steady-state values and are therefore not presented. It is seen 
that the flow approaches the steady state at the equator very rapidly, which is in 
direct contrast to the approach to the steady state a t  the pole. 

Results from the integration of the unsteady boundary-layer equations by the 
series-truncation method are shown in figures 8, 9 and 10, which give the time 
variation of R-$h/ar),, , ,  R-a(av/ar),,l and w(oo,O, t )  respectively. Also shown are 
the corresponding steady-state solutions. It is seen that the solution approaches the 
steady state faster near the equator than at the poles. When t = 4 the solution near 
the equator has almost reached its steady-state situation, whereas it requires t - 300 
before the flow near the pole approaches its steady-state value. The details of the 
approach to  the steady state near the poles are qualitatively similar to those 
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FIGIJRE 7 

presented by Bodonyi 

Z 

The variation of fi(z, t )  in (33) as a function of time. 

1978) and Banks & Zaturska (1979). The radial velocity a t  
the outer edge of the boundary layer shows a chaotic behaviour for 0 < 8 < in. This 
is consistent with the results of Banks & Zaturska (1979), who show that a t  the pole 
the radial velocity oscillates with time at large values of the time. Thus, if at the 
equator the steady state has been approached and one takes a time when the radial 
velocity a t  the pole is negative then, by continuity, we require a large positive radial 
velocity to be generated somewhere between 8 = 0 and 8 = in. This can be seen in 
figure 10 a t  t = 4 ;  i t  occurs also a t  later times, but we do not consider the results 
accurate enough to be presented in detail. 

I n  conclusion it has been shown that a steady-state boundary-layer solution does 
exist for the flow near a fixed sphere with the fluid outside the sphere rotating as a 
solid body. Since i t  is doubtful whether physically this solution can exist, an unsteady 
numerical approach has been investigated. This showed that the approach to the 
terminal solution near the equator was very rapid, whereas near the pole i t  was 
approached, but much more slowly. The series-truncation method showed that the 
steady-state solution appeared to be approached for all values of 8, although again 
the approach was much faster near the equator t,han the pole. It has not been possible 
to obtain with uniform accuracy all quantities for larger values of the time. This 
applies particularly to w(oo,8, t ) ,  especially in the region 0 < 0 < an, where the 
behaviour is chaotic. It is possible that the limitations on the various parameters, 
in particular z,, imposed by computer storage may have a bearing on this situation. 

The computations were carried out on the Amdahl computer at the University of 
Leeds. The work forms part of a general project supported by grants from the Natural 
Sciences and Engineering Research Council of Canada and by NATO. 
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e 
FIGURE 8. The variation of Rf(&/&),-, as a function of 6 at various times. 

e 

FIGURE 9. The variation of I ? + ( & ~ / a r ) ~ - ~  as a function of 6 at various times. 
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FIGURE 10. The variation of u~(oo,8, t )  as a function of 8 at various times. 
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